[1]刘阳 王永健 余家阔**.前交叉韧带股骨止点高密度纤维分布区的三维磁共振定位研究[J].中国微创外科杂志,2021,01(3):261-266.
 Liu Yang,Wang Yongjian,Yu Jiakuo..A Threedimensional Magnetic Resonance Study on the Position of High Density Fibre Part of Femoral Insertion of Anterior Cruciate Ligament[J].Chinese Journal of Minimally Invasive Surgery,2021,01(3):261-266.
点击复制

前交叉韧带股骨止点高密度纤维分布区的三维磁共振定位研究()
分享到:

《中国微创外科杂志》[ISSN:1009-6604/CN:11-4526/R]

卷:
01
期数:
2021年3期
页码:
261-266
栏目:
影像学研究
出版日期:
2021-04-01

文章信息/Info

Title:
A Threedimensional Magnetic Resonance Study on the Position of High Density Fibre Part of Femoral Insertion of Anterior Cruciate Ligament
作者:
刘阳 王永健 余家阔**
(北京大学第三医院运动医学科北京大学第三医院运动医学研究所膝关节外科运动医学关节伤病北京市重点实验室,北京100191)
Author(s):
Liu Yang Wang Yongjian Yu Jiakuo.
Department of Knee Surgery, the Institution of Sports Medicine, Peking University Third Hospital, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
关键词:
前交叉韧带股骨直接止点三维磁共振关节镜
Keywords:
Anterior cruciate ligamentFemoral direct insertionThreedimensional magnetic resonanceArthroscopy
文献标志码:
A
摘要:
目的通过三维磁共振(magnetic resonance,MR)对前交叉韧带(anterior cruciate ligament,ACL)股骨止点高密度纤维分布区的位置进行研究,指导关节镜下ACL股骨骨道的定位。方法对20名健康中青年志愿者的单膝进行三维MR扫描,使用Mimics重建得到ACL的股骨止点、股骨外侧髁以及股骨外髁软骨结构的三维模型,测量股骨止点高密度纤维分布区的位置及其与髁间窝高度、股骨外髁后软骨缘最高点的关系。结果在高分辨率三维MR中,ACL的股骨止点可分为高密度和低密度信号区域,分别代表直接和间接止点。直接止点的长轴长度为(15.8±2.4)mm,短轴长度为(6.2±1.3)mm。以髁间窝高度作为参照,直接止点位于此高度22%~43%。以股骨整体止点的高度作为参照,直接止点位于上方50%。直接止点中心均高于后软骨缘最高点,两者之间的距离为(5.68±1.97)mm。以性别分组,男女性志愿者直接止点相对位置(e、f、g)和直接止点中心点到后软骨缘最高点的距离(a)均无统计学差异(P>0.05)。以年龄段分组,除≤29岁组和≥40岁组g值有统计学差异(P<005)外,其余各组e、f、g和a值均无统计学差异(P>0.05)。结论ACL股骨止点的MR影像高密度和低密度信号区域分别代表直接和间接止点。髁间窝高度和后软骨缘最高点可作为解剖标志辅助关节镜下ACL股骨骨道的定位。
Abstract:
ObjectiveTo study the location of highdensity fibers in the femoral insertion of anterior cruciate ligament (ACL) by threedimensional magnetic resonance (MR), and to guide the location of femoral canal of ACL under arthroscopy.MethodsA total of 20 healthy young volunteers’ unilateral knees were imaged by using 3D MR scanning. In each set of MR image, the ACL femoral insertion were analyzed with different signal type, and the 3D models of the high density signal part, low density signal part, the lateral condyle of the femur and the cartilage of lateral condyle of femur were reconstructed with the Mimics. The position of the high density signal part of the ACL femoral insertion and its relationship with the height of intercondylar notch and high deep point were measured on 3D models.ResultsThe femoral footprint of ACL could be divided into high density fibre part which represented direct insertion, and low density fibre part which represented indirect insertion. The length of long axis of direct femoral insertion was (15.8±2.4) mm, the length of short axis of direct femoral insertion was (6.2±1.3) mm. With the height of the femoral intercondylar notch as a reference, the direct footprint located between approximately 22% to 43% of the height. With the height of the whole footprint as a reference, the direct footprint located at approximately the upper 50% of the height. The direct insertion center was higher than the height of the high deep point of the cartilage border, and the distance was (5.68±1.97) mm.Grouping by gender, there was no significant difference in the relative position of direct insertion (e, f, g) and the distance from the center of direct insertion to the highest point of posterior cartilage margin (a) (P>0.05). Grouping by age, there were no significant differences in e, f, g and a values among the groups (P>0.05), except for the g values of ≤29 years old group and ≥40 years old group (P<005). ConclusionsThe high density fibre part and low density fibre part of ACL femoral footprint represented the direct and indirect insertion. The height of the intercondylar notch and high deep point of the cartilage border could be used as references for allocating the femoral tunnel.

参考文献/References:

[1]Ferretti M, Ekdahl M, Shen W, et al. Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study.Arthroscopy,2007,23(11):1218-1225.
[2]Iriuchishima T, Ryu K, Aizawa S, et al. The difference in centre position in the ACL femoral footprint inclusive and exclusive of the fanlike extension fibres. Knee Surg Sports Traumatol Arthrosc,2016,24(1):254-259.
[3]Iwahashi T, Shino K, Nakata K, et al. Direct anterior cruciate ligament insertion to the femur assessed by histology and 3dimensional volumerendered computed tomography. Arthroscopy,2010,26(9 Suppl):S13-S20.
[4]Mochizuki T, Fujishiro H, Nimura A, et al. Anatomic and histologic analysis of the midsubstance and fanlike extension fibres of the anterior cruciate ligament during knee motion, with special reference to the femoral attachment. Knee Surg Sports Traumatol Arthrosc,2014,22(2):336-344.
[5]Mochizuki T, Muneta T, Nagase T, et al. Cadaveric knee observation study for describing anatomic femoral tunnel placement for twobundle anterior cruciate ligament reconstruction. Arthroscopy,2006,22(4):356-361.
[6]Sasaki N. Description of the Direct Femoral Attachment of the Anterior Cruciate Ligament: Implication for Femoral Tunnel Placement in Reconstruction. In:Chadwick C.Prodromos,ed.The Anterior Cruciate Ligament: Reconstruction and Basic Science.2nd Ed. Philadelphia: Elsevier,2018.193-196.
[7]Sasaki N, Ishibashi Y, Tsuda E, et al. The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations. Arthroscopy,2012,28(8):1135-1146.
[8]Siebold R, Ellert T, Metz S, et al. Femoral insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry and arthroscopic orientation models for doublebundle bone tunnel placement-A cadaver study. Arthroscopy,2008,24(5):585-592.
[9]Smigielski R, Zdanowicz U, Drwiega M, et al. Ribbon like appearance of the midsubstance fibres of the anterior cruciate ligament close to its femoral insertion site: a cadaveric study including 111 knees. Knee Surg Sports Traumatol Arthrosc,2015,23(11):3143-3150.
[10]Suruga M, Horaguchi T, Iriuchishima T, et al. Morphological size evaluation of the midsubstance insertion areas and the fanlike extension fibers in the femoral ACL footprint. Arch Orthop Trauma Surg,2017,137(8):1107-1113.
[11]Yasuda K, van Eck CF, Hoshino Y, et al. Anatomic single and doublebundle anterior cruciate ligament reconstruction, part 1: Basic science. Am J Sports Med,2011,39(8):1789-1799.
[12]Triantafyllidi E, Paschos NK, Goussia A, et al. The shape and the thickness of the anterior cruciate ligament along its length in relation to the posterior cruciate ligament: a cadaveric study.Arthroscopy,2013,29(12):1963-1973.
[13]Pathare NP, Nicholas SJ, Colbrunn R, et al. Kinematic analysis of the indirect femoral insertion of the anterior cruciate ligament: implications for anatomic femoral tunnel placement. Arthroscopy,2014,30(11):1430-1438.
[14]Benjamin M, Moriggl B, Brenner E, et al. The “enthesis organ” concept: Why enthesopathies may not present as focal insertional disorders. Arthritis Rheum,2004,50(11):3306-3313.
[15]Zantop T, Petersen W, Sekiya JK, et al. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction.Knee Surg Sports Traumatol Arthrosc,2006,14(10):982-992.
[16]Zantop T, Wellmann M, Fu FH, et al. Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med,2008,36(1):65-72.
[17]Tsukada S, Fujishiro H, Watanabe K, et al. Anatomic variations of the lateral intercondylar ridge: relationship to the anterior margin of the anterior cruciate ligament. Am J Sports Med,2014,42(5):1110-1117.
[18]Benjamin M, Kumai T, Milz S, et al. The skeletal attachment of tendonstendon "entheses". Comp Biochem Physiol A Mol Integr Physiol,2002,133(4):931-945.
[19]Siebold R, Takada T, Feil S, et al. Anatomical "C"shaped doublebundle versus singlebundle anterior cruciate ligament reconstruction in preadolescent children with open growth plates. Knee Surg Sports Traumatol Arthrosc,2016,24(3):796-806.
[20]Nawabi DH, Tucker S, Schafer KA, et al. ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations and isometric through passive flexion. Am J Sports Med,2016,44(10):2563-2571.
[21]Luites JW, Wymenga AB, Blankevoort L, et al. Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc,2007,15(12):1422-1431.

备注/Memo

备注/Memo:
基金项目:北京大学医学部高精尖学科建设项目(BMU2019GJJXK012);北京大学第三医院临床重点项目(BYSY2018004)**通讯作者,Email:yujiakuo@126.com
更新日期/Last Update: 2021-06-09