[1]孙振 侯文运 综述 肖毅**审校.人工智能在结直肠癌诊疗中的应用进展[J].中国微创外科杂志,2022,01(11):898-902.
点击复制

人工智能在结直肠癌诊疗中的应用进展()
分享到:

《中国微创外科杂志》[ISSN:1009-6604/CN:11-4526/R]

卷:
01
期数:
2022年11期
页码:
898-902
栏目:
文献综述
出版日期:
2023-02-23

文章信息/Info

作者:
孙振 侯文运 综述 肖毅**审校
(中国医学科学院北京协和医学院北京协和医院基本外科结直肠专业组,北京100730)
文献标志码:
A

参考文献/References:

[1]Vogel JD,Felder SI,Bhama AR,et al.The American Society of Colon and Rectal Surgeons clinical practice guidelines for the management of colon cancer.Dis Colon Rectum,2022,65(2):148-177.
[2]You YN,Hardiman KM,Bafford A,et al.The American Society of Colon and Rectal Surgeons clinical practice guidelines for the management of rectal cancer.Dis Colon Rectum,2020,63(9):1191-1222.
[3]Hosny A,Parmar C,Quackenbush J,et al.Artificial intelligence in radiology.Nat Rev Cancer,2018,18(8):500-510.
[4]Lu Y,Yu Q,Gao Y,et al.Identification of metastatic lymph nodes in MR imaging with faster regionbased convolutional neural networks.Cancer Res,2018,78(17):5135-5143.
[5]Repici A,Spadaccini M,Antonelli G,et al.Artificial intelligence and colonoscopy experience:lessons from two randomised trials.Gut,2022,71(4):757-765.
[6]Yuan Z,Xu T,Cai J,et al.Development and validation of an Imagebased deep learning algorithm for detection of synchronous peritoneal carcinomatosis in colorectal cancer.Ann Surg,2022,275(4):e645-e651.
[7]Wang D,Xu J,Zhang Z,et al.Evaluation of rectal cancer circumferential resection margin using faster regionbased convolutional neural network in highresolution magnetic resonance images.Dis Colon Rectum,2020,63(2):143-151.
[8]Igaki T,Kitaguchi D,Kojima S,et al.Artificial intelligencebased total mesorectal excision plane navigation in laparoscopic colorectal surgery.Dis Colon Rectum,2022,65(5):e329-e333.
[9]Kitaguchi D,Takeshita N,Matsuzaki H,et al.Computerassisted realtime automatic prostate segmentation during TaTME:a singlecenter feasibility study.Surg Endosc,2021,35(6):2493-2499.
[10]Goyal H,Mann R,Gandhi Z,et al.Scope of artificial intelligence in screening and diagnosis of colorectal cancer.J Clin Med,2020,9(10):3313.
[11]Wang P,Xiao X,Glissen Brown JR,et al.Development and validation of a deeplearning algorithm for the detection of polyps during colonoscopy.Nat Biomed Eng,2018,2(10):741-748.
[12]Repici A,Badalamenti M,Maselli R,et al.Efficacy of realtime computeraided detection of colorectal neoplasia in a randomized trial.Gastroenterology,2020,159(2):512-520.e7.
[13]Wang P,Liu X,Berzin TM,et al.Effect of a deeplearning computeraided detection system on adenoma detection during colonoscopy (CADeDB trial):a doubleblind randomised study.Lancet Gastroenterol Hepatol,2020,5(4):343-351.
[14]Vinsard DG,Mori Y,Misawa M,et al.Quality assurance of computeraided detection and diagnosis in colonoscopy.Gastrointest Endosc,2019,90(1):55-63.
[15]Kudo SE,Misawa M,Mori Y,et al.Artificial intelligenceassisted system improves endoscopic identification of colorectal neoplasms.Clin Gastroenterol Hepatol,2020,18(8):1874-1881.e2.
[16]Jin EH,Lee D,Bae JH,et al.Improved accuracy in optical diagnosis of colorectal polyps using convolutional neural networks with visual explanations.Gastroenterology,2020,158(8): 2169-2179.e8.
[17]Barua I,Vinsard DG,Jodal HC,et al.Artificial intelligence for polyp detection during colonoscopy:a systematic review and metaanalysis.Endoscopy,2021,53(3):277-284.
[18]Shu Z,Mao D,Song Q,et al.Multiparameter MRIbased radiomics for preoperative prediction of extramural venous invasion in rectal cancer.Eur Radiol,2022,32(2):1002-1013.
[19]Chen LD,Li W,Xian MF,et al.Preoperative prediction of tumour deposits in rectal cancer by an artificial neural networkbased US radiomics model.Eur Radiol,2020,30(4):1969-1979.
[20]Kudo SE,Ichimasa K,Villard B,et al.Artificial intelligence system to determine risk of T1 colorectal cancer metastasis to lymph node.Gastroenterology,2021,160(4):1075-1784.e2.
[21]Haak HE,Gao X,Maas M,et al.The use of deep learning on endoscopic images to assess the response of rectal cancer after chemoradiation.Surg Endosc,2022,36(5):3592-3600.
[22]Ferrari R,ManciniTerracciano C,Voena C,et al.MRbased artificial intelligence model to assess response to therapy in locally advanced rectal cancer.Eur J Radiol,2019,118:1-9.
[23]Feng L,Liu Z,Li C,et al.Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer:a multicentre observational study.Lancet Digit Health,2022,4(1):e8-e17.
[24]Zhu HB,Xu D,Ye M,et al.Deep learningassisted magnetic resonance imaging prediction of tumor response to chemotherapy in patients with colorectal liver metastases.Int J Cancer,2021,148(7):1717-1730.
[25]Kumar N,Gupta R,Gupta S.Whole slide imaging (WSI) in pathology: current perspectives and future directions.J Digit Imaging,2020,33(4):1034-1040.
[26]Baxi V,Edwards R,Montalto M,et al.Digital pathology and artificial intelligence in translational medicine and clinical practice.Mod Pathol,2022,35(1):23-32.
[27]Yu G,Sun K,Xu C,et al.Accurate recognition of colorectal cancer with semisupervised deep learning on pathological images.Nat Commun,2021,12(1):6311.
[28]Kiehl L,Kuntz S,Hohn J,et al.Deep learning can predict lymph node status directly from histology in colorectal cancer.Eur J Cancer,2021,157:464-473.
[29]Yamashita R,Long J,Longacre T,et al.Deep learning model for the prediction of microsatellite instability in colorectal cancer:a diagnostic study.Lancet Oncol,2021,22(1):132-141.
[30]Shimada Y,Okuda S,Watanabe Y,et al.Histopathological characteristics and artificial intelligence for predicting tumor mutational burdenhigh colorectal cancer.J Gastroenterol,2021,56(6):547-559.
[31]Vyrynen JP,Lau MC,Haruki K,et al.Prognostic significance of immune cell populations identified by machine learning in colorectal cancer using routine hematoxylin and eosinstained sections.Clin Cancer Res,2020,26(16):4326-4338.
[32]Bilal M,Raza SEA,Azam A,et al.Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images:a retrospective study.Lancet Digit Health,2021,3(12): e763-e772.
[33]Mori T,Ikeda K,Takeshita N,et al.Validation of a novel virtual reality simulation system with the focus on training for surgical dissection during laparoscopic sigmoid colectomy.BMC Surg,2022,22(1):12.
[34]Araujo SEA,Delaney CP,Seid VE,et al.Shortduration virtual reality simulation training positively impacts performance during laparoscopic colectomy in animal model:results of a singleblinded randomized trial.VR warmup for laparoscopic colectomy.Surg Endosc,2014,28(9):2547-2554.
[35]Ahn HM,Son GM,Lee IY,et al.Optimal ICG dosage of preoperative colonoscopic tattooing for fluorescenceguided laparoscopic colorectal surgery.Surg Endosc,2022,36(2):1152-1163.
[36]Zhang W,Zhu W,Yang J,et al.Augmented reality navigation for stereoscopic laparoscopic anatomical hepatectomy of primary liver cancer:preliminary experience.Front Oncol,2021,11:663236.
[37]Safiejko K,Tarkowski R,Koselak M,et al.Roboticassisted vs. standard laparoscopic surgery for rectal cancer resection:a systematic review and metaanalysis of 19,731 patients.Cancers (Basel),2021,14(1):180.
[38]Cuk P,Kjaer MD,Mogensen CB,et al.Shortterm outcomes in robotassisted compared to laparoscopic colon cancer resections:a systematic review and metaanalysis.Surg Endosc,2022,36(1):32-46.
[39]Saeidi H,Opfermann JD,Kam M,et al.Autonomous robotic laparoscopic surgery for intestinal anastomosis.Sci Robot,2022,7(62):eabj2908.
[40]Zhao K,Li Z,Yao S,et al.Artificial intelligence quantified tumourstroma ratio is an independent predictor for overall survival in resectable colorectal cancer.EBioMedicine,2020,61:103054.
[41]Li H,Boimel P,JanopaulNaylor J,et al.Deep convolutional neural networks for imaging data based survival analysis of rectal cancer.Proc IEEE Int Symp Biomed Imaging,2019,2019:846-849.
[42]Kather JN,Krisam J,Charoentong P,et al.Predicting survival from colorectal cancer histology slides using deep learning:a retrospective multicenter study.PLoS Med,2019,16(1):e1002730.
[43]Reichling C,Taieb J,Derangere V,et al.Artificial intelligenceguided tissue analysis combined with immune infiltrate assessment predicts stage III colon cancer outcomes in PETACC08 study.Gut,2020,69(4):681-690.
[44]Skrede OJ,De Raedt S,Kleppe A,et al.Deep learning for prediction of colorectal cancer outcome:a discovery and validation study.Lancet,2020,395(10221):350-360.
[45]Sun C,Li B,Wei G,et al.Deep learning with whole slide images can improve the prognostic risk stratification with stage III colorectal cancer.Comput Methods Programs Biomed,2022,221:106914.
[46]Bibault JE,Chang DT,Xing L.Development and validation of a model to predict survival in colorectal cancer using a gradientboosted machine.Gut,2021,70(5):884-889.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(62172437)**通讯作者,Email:xiaoy@pumch.cn
更新日期/Last Update: 2023-02-23