[1]方晓清,付亚兰.经皮骨移植增强的有限元研究[J].中国微创外科杂志,2012,12(11):1040-1044.
 Fang Xiaoqing*,Fu Yalan..Percutaneous Vertebral Augmentation with Bone graft: 3D Finite Element Analysis[J].Chinese Journal of Minimally Invasive Surgery,2012,12(11):1040-1044.
点击复制

经皮骨移植增强的有限元研究()
分享到:

《中国微创外科杂志》[ISSN:1009-6604/CN:11-4526/R]

卷:
12
期数:
2012年11期
页码:
1040-1044
栏目:
实验研究
出版日期:
2012-11-20

文章信息/Info

Title:
Percutaneous Vertebral Augmentation with Bone graft: 3D Finite Element Analysis
作者:
方晓清付亚兰
浙江省瑞安市塘下人民医院骨伤科,瑞安325204
Author(s):
Fang Xiaoqing* Fu Yalan.
*Department of Orthopedics, Tangxia People’s Hospital, Ruian 325204, China
关键词:
功能脊柱单位有限元分析应力材料力学相容性生物相容性
Keywords:
Functional spinal unitFinite element analysisStressMechanical compatibilityBiocompatibility
分类号:
R683.2
文献标志码:
A
摘要:
目的 利用腰椎三维有限元模型,探讨松质骨粒(cancellous bone granule, CBG)和聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)增强后对治疗节段和相邻非治疗节段椎体生物力学影响。方法 L1~L2的三维功能脊柱单位的有限元模型由脊柱尸体标本CT扫描后形成。分别模拟骨质疏松模型、CBG和PMMA增强,分析轴向压缩、前屈和后伸3种加载状态下手术前后治疗节段和相邻非治疗节段椎体应力和应变的变化。结果 在压缩、前屈和后伸3种加载状态下,松质骨粒增强模型强化区最大的Von Mises应力/应变分别为0.457、0.469、0.499 MPa/0.459%、0.471%、0.501%;PMMA增强模型为0.864、0.824、0.966 MPa/0.029%、0.028%、0.033%;骨质疏松模型相应区域为0.237、0.253、0.258 MPa/0698%、0.752%、0.759%。与骨质疏松模型比较,治疗节段增强区域的应力/应变明显改变。结论 CBG和PMMA均增强治疗节段的总体强度和刚度水平,有利于椎体功能的重建,但就材料力学相容性和生物相容性而言,CBG的增强优于PMMA增强。
Abstract:
ObjectiveTo investigate, by using 3D finite element (FE) model, the biomechanical effects of percutaneous vertebral augmentation with cancellous bone granule (CBG) and polymethylmethacrylate (PMMA) augmentation on the biomechanics of the vertebra that received treatment and its adjacent vertebrae.MethodsThe 3D FE models of L1L2 functional spinal unit (FSU) was made by CT scanning cadaveric spine. Models of osteoporosis, and CBG and PMMA augmentation were simulated so that to analyze the change of the stress and strain of the vertebra being treated (loading conditions: under compression, anteflexion or retroextension) and its adjacent vertebrae before and after the procedure.ResultsUnder compression, anteflexion and retroextension loading conditions, the maximum was 0.457, 0.469, 0.499 MPa/0.459%,0.471%, 0.501% in the osteoporosis model, 0.864, 0.824, 0.966 MPa/0.029%, 0.028%, 0.033% in the PMMA augmentation model, and 0.237, 0.253, 0258 MPa/0.698%, 0.752%, 0.759% in the CBG model. The augmentation models showed significantly changed Von Mises stress/strain, compared to the osteoporosis model. ConclusionsBoth CBG and PMMA decrease the total strength and stiffness level of the treated vertebral bodies, which benefit the reconstruction of vertebral function. CBG augmentation shows better mechanical compatibility and biocompatibility than PMMA augmentation.

参考文献/References:

[1]邓忠良,安洪,柯珍勇,等.椎体严重压缩骨折的经皮穿刺椎体成形术治疗.中国微创外科杂志,2003,3(4):294-296.
[2]李龙,李兵 ,苟凌云,等.经皮椎体成形术治疗胸腰椎骨质疏松性压缩性骨折.中国微创外科杂志,2007,7(7):661-662.
[3]Fribourg D, Tang C, Sra P, et al. Incidence of subsequent vertebral fracture after kyphoplasty. Spine,2004,29: 2270-2276.
[4]Lam S, Khoo LT. A novel percutaneous system for bone graft delivery and containment for elevation and stabilization of vertebral compression fractures.Technical note. Neurosurg Focus,2005,18(3):e10.
[5]Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit(finiteelement analysis).Spine,2003,28(10):991-996.
[6]Brodt MD, Swan CC, Brown TD. Mechanical behavior of human morselized cancellous bone in triaxial compression testing. J Orthop Res,1998,16: 43-49.
[7]Chiu J, Stechison MT. Percutaneous vertebral augmentation and reconstruction with an intravertebral mesh and morcelized bone graft. Surg Technol Int,2005,14:287-296.
[8]Lee KK, Teo EC, Qiu TX, et al. Effect of facetectomy on lumbar spinal stability under sagittal plane loadings. Spine,2004,29(15):1624-1631.
[9]Bergmark A. Stability of the lumbar spine: a study of mechanical engineering. Acta Orthop Scand Suppl, 1989, 230:1-54.
[10]Brown T, Hansen RJ, Yorra AJ. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs; a preliminary report. J Bone Joint Surg Am,1957,39:1135-1164.
[11]Markolf KL, Morris JM. The structural components of the intervertebral disc: a study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am,1974,56: 675-687.
[12]Nachemson A. Lumbar intradiscal pressure. Experimental studies on postmortem material. Acta Orthop Scand Suppl,1960,43:1-104.
[13]Markolf KL, Morris JM. The structural components of the intervertebral disc: a study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am,1974,56: 675-687.
[14]Baroud G, Nemes J, Heini P, et al. Load shift of the intervertebral disc after a vertebroplasty: a finiteelement study. Eur Spine,2003,12:421-426.
[15]Grafe IA, Da Fonseca K, Hillmeier J, et al. Reduction of pain and fracture incidence after kyphoplasty: 1year outcomes of a prospective controlled trial of patients with primary osteoporosis. J Osteoporos Int,2005,16(12): 2005-2012.
[16]Villarraga ML, Bellezza AJ, Harrigan TP, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. Spinal Disord Tech,2005,18(1):84-91.
[17]Harrop J, Bronco P, Reinhardt MK, et al. Incidence of remote and adjacent fractures after kyphoplasty.Proceedings of the North American Spine Society, Montreal, Quebec, Canada, 2002.122-123.
[18]Belkoff SM, Maroney M, Fenton DC, et al. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone Suppl,1999,25(2):23-26.

备注/Memo

备注/Memo:
付亚兰(温州医学院数字化医学研究所,温州325035)
更新日期/Last Update: 2013-03-27